
JORGE NAVAZA, E. E. CASTELLANO AND G. TSOUCARIS 631 

COLLINS, D. M. (1975). Acta Cryst. A31, 388-389. 
COLLINS, D. M. (1982). Nature (London) 298, 49-51. 
CUTFIELD, J. F., DODSON, E. J., DODSON, G. G., HODGKIN, D. C., 

ISAACS, N. W., SAKABE, K. & SAKABE, N. (1975). Acta Cryst. 
A31, $21. 

FRIEDEN, R. (1972). 3". Opt. Soc. Am. 62, 511-518. 
GULL, S. F. & DArCmL, G. J. (1978). Nature (London), 272, 

686-690. 
KHACHATURYAN, A., SEMENOVSKAYA, S. & VAINSHTEIN, B. 

(1981). Acta Cryst. A37, 742-754. 
KRAaBENDAM, H. & KROON, J. (1971). Acta Cryst. A27, 48-53. 
NARAYAN, R. & NrrYANANDA, R. (1981). Acta Cryst. A38, 

122-128. 

PIRO, O. (1983). Acta Cryst. A39, 61-68. 
SAYRE, D. (1972). Acta Cryst. A25, 210-212. 
SAYRE, D. (1974). Acta Cryst. A30, 180-184. 
SAYRE, O. (1975). In Crystallographic Computing Techniques, 

edited by F. R. AHMED, pp. 322--327. Copenhagen: 
Munksgaard. 

SAYRE, O. (1980). Theory and Practice of Direct Methods in 
Crystallography, edited by M. F. C. LADD & R. A. PALMER, pp. 
271--286. New York: Plenum Press. 

SHANNON, C. E. • WEAVER, W. (1949). The Mathematical Theory 
of Communication. Urbana: Univ. of Illinois Press. 

ZWlCK, M., BANTZ, D. & HUGHES, J. (1976). Ultramicroscopy, l, 
275-277. 

Acta Cryst. (1983). A39, 631-641 

Willis Formalism of Anharmonic Temperature Factors for a General Potential and its 
Application in the Least-Squares Method 

BY KIYOAKI TANAKA AND FUMIYUKI MARUMO 

The Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, 
Yokohama 227, Japan 

(Received 18 September 1982; accepted 7 March 1983) 

Abstraet Introduction 

Willis treatment of anharmonic temperature factors 
including up to fourth-order terms has been generalized 
and incorporated into a conventional full-matrix least- 
squares program. The temperature factor T(S) includ- 
ing the anharmonic vibration effect is formulated in the 
general case using Willis's method. T(S) is based on the 
Cartesian coordinates defined by the three principal 
axes of the harmonic thermal ellipsoid. The simul- 
taneous refinement of the parameters in T(S) with the 
conventional parameters in crystallography, which are 
based on the crystal lattice system, is possible. In order 
to introduce T(S) into conventional full-matrix least- 
squares programs, some other relations were also 
derived, such as that between crystallographic sym- 
metry and T(S), and that among parameters due to 
point symmetry of the atom, and so on. The present 
method was applied to the K and two F atoms in 
KCuF 3 crystals at 296 K with the point symmetries of 
the sites 422, 42m and mm2, respectively, and A1 and 
O atoms in tx-AI20 3 crystals at 2170 K with the point 
symmetries 3 and 2, respectively. The features of the 
potentials of atoms in KCuF 3 crystals correspond very 
well to the peaks on the difference-Fourier maps. After 
the correction for anharmonic vibration, the difference- 
Fourier map around each atom became fiat. It indicates 
that in an accurate electron density study the an- 
harmonic vibration effect is not negligible and the Willis 
method works effectively. 
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Studies on anharmonic vibration have been mainly 
performed by neutron diffraction, since the constant 
value of the neutron cross section prevents steep 
diminution in intensities of high-angle reflexions, and 
since no interaction between aspherical thermal vib- 
rations of nuclei and aspherical electron distribution 
favors the neutron diffraction study. However, recent 
advances in X-ray diffraction have made it possible to 
observe a large number of high-angle reflexions 
accurately. In the recent X-ray study of KCuF a 
(Tanaka & Marumo, 1982), it was shown that the 
interaction between the two asphericities was not so 
severe. And the peaks of the anharmonic vibration 
appeared on a difference-Fourier map after the removal 
of those of the aspherical electron distribution. Thus, 
the main difficulties in the X-ray study of anharmonic 
vibration in crystals where covalency of bonds does not 
play a significant role are believed to be overcome. It 
has become highly necessary and desirable to modify 
the harmonic temperature-factor formalism to that of 
the general temperature factor (GTF), which includes 
the effects of anharmonic vibration of atoms. 

Assuming a crystal to be an assembly of independent 
oscillators, several authors formulated the GTF by 
taking the ensemble average of the one-particle poten- 
tial (OPP). Willis (1969) expressed the OPP as a 
power-series expansion and formulated the GTF for 
atoms with cubic point symmetries. Kurki-Suonio, 
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632 ANHARMONIC TEMPERATURE FACTORS FOR A GENERAL POTENTIAL 

Merisalo & Peltonen (1979) expanded the OPP by 
spherical harmonics and other functions depending on 
the crystal symmetry. They formulated the GTF and 
derived various relations necessary for its general use. 
In these two methods, the OPP is divided into harmonic 
and anharmonic parts, we call them V h and V~, 
respectively, and a temperature factor is calculated 
assuming V~ is smaller than ks T, where k s and T are 
Boltzman's constant and the temperature of the system, 
respectively. Accordingly, these methods are not 
available for a large anharmonic OPP. In order to 
avoid the difficulty Matsubara (1975a,b) expressed 
T(S) as the exponent of the cumulant expansion 

T(S)=  (exp(2~'/S.u)) = exp ((2~qS.u)~)/n! , 
Ln=l 

where ( )  means an average over u, a displacement 
vector, and S is a scattering vector. ((2~'/S.u)~) is 
calculated by taking the ensemble average of the OPP. 

Johnson's (1969) formalism is based on statistics 
and is completely different from the others. He 
expanded the characteristic function of an arbitrary 
trivariate probability density function in terms of 
cumulants. The first and second cumulants correspond 
to positional parameters and harmonic temperature 
factors, respectively. The third and the fourth cumulants 
provide an estimate of the 'skewness' and 'kurtosis' of 
the probability density function, respectively. Thus 
aspherical electron distribution due to bonding as well 
as the anharmonic vibration effect is involved in these 
terms in X-ray studies. 

Johnson's formalism is the most general one and free 
from any kinetic constraints. It is thus free from any 
restrictions in the OPP expansion methods. However, 
clear and straightforward interpretation of the cal- 
culated cumulants is rather difficult owing to its 
generality and its independence of kinematical models. 
In the OPP expansion method by Willis, the calculated 
OPP exhibits directions along which an atom can 
vibrate easily in crystals. It is this property that makes 
the Willis method attractive and important. Since 
anharmonic vibration of atoms is expected to be 
continuously enhanced when a temperature becomes 
higher or approaches a phase transition point (Sakata, 
Harada, Cooper & Rouse, 1980), Willis's method is 
applicable to studies on precursory phenomena of 
diffusion and phase transition in crystals. When the 
anharmonic vibration becomes so large that the OPP 
expansion methods cannot be applied, Matsubara's 
method for high-symmetry atoms, or Johnson's 
method, should be employed. Since in most of the 
electron-density studies anharmonic vibration is usually 
small, the Willis method is the most suitable one for 
these studies. 

Willis's method has been applied in many studies of 
anharmonic vibration of atoms, as summarized in 
Table 1. However, its application has been limited to 

atoms with cubic symmetries. The exceptions are the 
studies on Ag atoms in ct-AgI crystals (Hoshino, 
Sakuma & Fujii, 1977) and in fl-AgaSI crystals 
(Sakuma & Hoshino, 1980), on O atoms in BaTiO 3 
crystals (Tanaka, Shiozaki & Sawaguchi, 1979) and on 
Cu atoms in KCuF 3 crystals (Tanaka & Marumo, 
1982). The directions of the principal axes of the 
harmonic ellipsoid are coincident with those of lattice 
vectors due to symmetry restrictions in the studies on 
the Ag and the O atoms, while in the study on KCuF 3 
crystals performed by the present method they are not 
coincident. Whiteley, Moss & Barnea (1978) extended 
the Willis method by introducing the integral L 

oO 

I = _t" xn exp(-ax2 - bx + iyx) dx 

= (inv/-~/2 natn+ w2)exp [ (b -  i7)2/4a] 

Table 1. List of  analyses with Willis's method 

Compounds Atoms* 

Fluorite 
UOz O(43m) 

CaF 2 F(43m) 

BaF z F(43m) 

MgzSi M~(43m) 
SrF 2 F(43m) 

AuGa z Ga(3,3m) 
Diamond 

Si Si(43m) 

Ge Ge(43m) 
Rocksalt 

KCI K, Cl(z~3m) 

Zinc blende 
ZnS Zn, S(Z~3m) 
ZnTe Zn, Te(43m) 
CuBr Cu, Br(3,3m) 
CuCI Cu, Cl(Z~3m) 

Wurtzite 
CdSe Cd, Se(3m) 

Perovskite 
BaTiO 3 Ba, Ti(m3m), 

O(4/mmm) 
Others 

ct-AgI Ag(42m) 
fl-Ag3SI Ag(mm2) 
KCuF 3 Cu(mmm) 

F(3,2m, mm2), 
K(422) 

VA110.42 Al(43m) 
ct-AlzO 3 Al(3), 0(2) 

Methodsf References 

N Dawson, Hurley & Maslen (1967) 
N Rouse, Willis & Pryor (1968) 
N Dawson, Hurley & Maslen (1967) 
N Rouse, Willis & Pryor (1968) 
X Cooper (1970b) 
N Cooper & Rouse (1971) 
X Strock & Batterman (1972) 
N Cooper, Rouse & Willis (1968) 
N Willis (1969) 
X Cooper (1970a) 
N Cooper & Rouse (1971) 
N Mair & Barnea (1971) 
N Malr, Barnea, Cooper & Rouse 

(1974) 
N Prager & Harvey (1975) 

N Dawson & Willis (1967) 
X Roberto & Batterman (1970) 
N Keating, Nunes, Batterman & 

Hastings (1971) 
N Dawson & Willis (1967) 

X Willis (1969) 
N Cooper & Rouse (1973) 

N Cooper, Rouse & Fuess (1973) 
N Cooper, Rouse & Fuess (1973) 
N Harada, Suzuki & Hoshino (1976) 
N Sakata, Hoshino & Harada (1974) 
N Moss, McMullan & Koetzle (1980) 

N Whiteley, Moss & Barnea (1978) 
(see text) 

X Tanaka, Shiozaki & Sawaguchi 
(1979) 

N Hoshino, Sakuma & Fujii (1977) 
N Sakuma & Hoshino (1980) 
X Tanaka & Marumo (1982) 
X Present study 

X Kontio & Stevens (1982) 
X Tanaka & Marumo (1983) 

* Point symmetries of investigated atoms are listed in parentheses. 
f X: X-ray diffraction; N: neutron diffraction. 
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× H,,[(7 + ib)/2 v/al, 

where H ,  is the nth-order Hermite polynomial of 
complex argument. Atoms in wurtzite-type ZnTe with 
the point symmetry 3m were studied by them. 
Kurki-Suonio, Merisalo & Peltonen (1979) applied 
their method to Zn crystals with the point symmetry 
6m2. However, these methods are not simple and can- 
not be easily applied to a general case. Thus it is highly 
desirable to generalize the Willis method and to allow 
every crystallographer the routine use of it. The GTF of 
atoms at a general position was derived by Coppens 
(1978). The purpose of the present study is to 
formulate the GTF with the Willis treatment, which is 
performed independently from Coppens and to present 
basic relations necessary to incorporate the GTF into a 
conventional least-squares program. 

Theoretical 

Choice o f  basis coordinates 

Now we deal with the GTF including anharmonic 
vibration effects following the Willis (1969)treatment. 
The first problem is how to choose basis coordinates by 
which temperature factors can be conveniently ex- 
pressed. We choose the Cartesian coordinates with 
three axes parallel to the principal axes of the harmonic 
thermal ellipsoid; this is because the GTF can be 
formulated analytically on the coordinate following the 
Willis treatment, variables based on it can be refined 
simultaneously with the other variables based on the 
crystal-lattice system (see Appendix 1), and site- 
symmetry restrictions on anharmonic parameters are 
expressed for all 32 point symmetries in a simple way 
without losing generality. 

Formalism o f  GTF 

Assuming that an atom in a crystal vibrates 
independently of the other atoms, we can express the 
potential V of an atom in terms of the displacement 
vector u from the equilibrium position as follows, u is 
defined on the basis of the Cartesian coordinate system 
cited in the preceding paragraph. 

V =  V o + Z biu~/2 + Z Z CljjUiU~ "]- C123UlU2U3 
i i,j 

+ Z Z  2 2  qiijjUi ll) + Z Z 3 quuul uj 
i<_j i~ j  

+ Z t  qiijkU2UjUk • (1) 
i 

Hereafter, ~i  means summation over i under the 
condition that subscripts i, j and k are different from 
each other. The ul's are the components of the 
displacement vector u. There are ten Cuk'S and fifteen 
qwk'S. From now on we take the n-dimensional column 
vector as a matrix with n rows and 1 column. It is 
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convenient to express u on the basis of the crystal- 
t _ _  C C C . I  lattice system and we call it u e (u~,u2,u3), means a 

transposed matrix, u is expressed by u c as 

and 

or 

u = Au c (2) 

a. i, b. i, C . i )  
A = | a .  j, b. j, c. 

\a.k, b.k, c. 
(3) 

a*. i, a*. j, a* 
A -1 b*. b* = b*.i, j, , 

c*. i, c*. j, c* 
where i, j and k are the unit vectors along the principal 
axes of the thermal ellipsoid, a, b and c, and a*, b* and 
c* are lattice vectors and reciprocal-lattice vectors, 
respectively. V is rewritten for the convenience of 
computing facilities as follows. 

V =  V 0 + u' Bu/2 + u' Cv + c12 3 u s u 2 u 3 q- V t Qw, 

where v' and w' are the (1,3) and (1,6) matrices with 
the form (u~, u~, u]) and (u~, u~, u], u 2 u 3, u 3 ul, ul u2), 
respectively. B, C and Q are matrices with the forms 

. - -  o ,  c=V., r, 
0 b ~311 c322 c33 4 

/q l l l l  q1122 q1133 q1123 ql131 qll12~ 

Q - t :  q2222q2233q2223q2231q22121" 
0 q3333 q3323 q333~ q33~2/ 

The GTF is evaluated by taking the ensemble 
average of the potential in the classical limit, 

T(S) = (exp(2z~iS. u)) 

= f e x p ( - V / k  n T) exp(2mS, u) du 

x [f e x p ( - V / k  n T)du] -1, (4) 

where S = ha* + kb* + Ic*. From (2), S. u is expressed 
in terms of u as follows. 

S. u = hu~ + ku~ + lu~3 

= h '  u c 

= h' A -~ u, 

where h' = (h,k,l). If we put H' = (H1,H2,Ha) - 
27rh' A -1, S. u becomes 

S. u = H' u/2zt. (5) 

Following the Willis method, T(S) is derived (see 
Appendix 2), 
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T(S) = expt-- Z H~ U/2 ) {1-- (~-- rlr + ~r) 

- i ( ~ -  ~t~)}/(1--~r), (6) 

where 

~r = 3 ~. Quu U2 + ~ ~, Qujj Ut Uj, 
t i<j 

qr = 6 X Qilii H2 Ui 3 + ~ ~. alijj( H2 U2 Uy 
i i<j 

-'1- HI U i Uj 2) + 3 ~. Z Qiiij Hi Hj U: Uj 

+ Z' Qiijk Hj H k U i Uj Uk, 
1 

~r = ~. a m , H :  u :  + ~, ~ QiijjH 2 H 2 U~ U 2 
i i<J 

+ Z Z Quo H~ Hj U ? Uj 

+ Z' QiijkH~ HjHk U: Uj Uk, 
i 

~,= 3 Z CHinivl  2 + Z Z CljjHIUiUj, 
i i , j  

~]i--" Z Ciiin? U? + Z Z Cf j jn in]  Ui U: 
l l~:J 

+ cx~3 ~ n~ t-I~ ~, ~ ~ .  
For Ui's, Cijk'S and Qiok's, see Appendix 2. The 
imaginary part of T(S) originates from the third-order 
terms of ui's in the potential Vin (1). ~r.~, r/r.i and ~ are 
dependent on harmonic components Ui's and are 
proportional to k B T, (k s T) 2 and (k n T) 3, respectively. 
~ is independent of S. Denoting the harmonic tempera- 
ture factor e x p ( - ~ / H  2 Ui/2) as Th(S), we express T(S) 
as  

T(S) = Th(S)[Tq(S) + iTc(S)], 

where 

T+(S) = (1 -- ~r + r / r -  ff~)/( I - ~r) 

To(S) = (--~i + rh)/(1 - ~). 

As seen in (6), all the terms in +r, r/r and ~r are of even 
powers of H i and those in +i and r/i are odd powers of 
H t. Accordingly, T~(S) of the other Friedel pair changes 
its sign, while Tq(S) does not. 

In order to introduce Th(S ) into least-squares 
programs based on the crystal-lattice system, we must 
derive the relation between Ui's and Uij's defined in the 
conventional harmonic temperature factor T0(S) as 

To(S) = exp {-27r2[h  2 a .2  Ul l  + k 2 b .2  U22 + 12 c .2  U33 

+ 2(hka* b* U12 + hla* c* U13 

+ klb* c* U23)1 } 

= exp (-2zr 2 h' NU o Nh), (7) 

where N is the diagonal matrix with reciprocal-lattice 
constants, a*, b* and c*, as diagonal elements and Uo is 
the conventional thermal vibration tensor. Th(S) is 
expressed in the same way, 

Th(S ) = exp ( -H '  U h H/2) 

= exp(-2zc 2 h' A -1Uh A -1' h), (8) 

where U~ is the diagonal matrix with diagonal elements 
U~, U2 and U 3, respectively. From (7) and (8), 

A -1 U h A -1' = NU o N 
or  

where M = AN. 

U h = ANU o NA' 

= M U  o M ' ,  

Generalized structure factor 

As Dawson (1967) pointed out, 'both at-rest charge 
distribution and nuclear smearing function due to 
thermal vibration may be non-centrosymmetric and 
hence they may be complex', the imaginary part of a 
temperature factor originates from the third-order 
non-centrosymmetric terms as shown in (6). Since the 
temperature factor of an atom at a symmetry-related 
position, as well as the scattering factor, are not 
necessarily the same as those of an atom at the original 
position, the generalized structure factor F(S) is 
expressed as follows. 

J S 
F ( S ) =  Y aj Z f/s(S) Tjs(S)exp[27dS.rjs], (9) 

J s 

where fjs(S) and T/s(S) are the aspherical scattering 
factor and the temperature factor, respectively, of the 
j th  atom at the sth symmetry-related position. J and S 
are the number of atoms in the asymmetric unit and the 
number of symmetry operations, respectively, fjs(S) is 
expressed including the effects of anomalous dispersion 
as follows. 

f~sCS) =fj~CS)+ Aff + [fflCS)+ Af]'], (10) 

where superscripts c and a refer to the centro- 
symmetric and antisymmetric components, respect- 
ively. From (8), (9) and (I0), we obtain 

1 s 

F(s)  = y aj Y [Aj~(s) + mj,(s)],  
J s 

where 

Ays(S) = [fj~(s) + afj,  ] a~ - [fj~(s) + ,Cj" ] ~ ,  

Bjs(S)--[fjCs(S)+ Aff]fljUs+[ffl(S)+ Afj"]ay s, (11) 

c 
~- -  rj,~, + 7 % ,  
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Cgs = Tjs h cos (2 ~zS. rjs ), 

fljs = Tj h s in (2nS,  rjs). 

aj is the multiplicity of  t h e j t h  a tom and rjs is the vector 
from the origin to the atom related by the j t h  atom in 
the asymmetr ic  unit by the sth symmet ry  operation. 
Since temperature factors and scattering factors of  a 
Friedel pair are.the same except for the sign of Tj~ and 
fjs ~, the structure factor F(S) of  h/~i is expressed in terms 
ofAjs(S ) and Bjs(S ) of  hkl  as 

J S 

F(S) = Z aj  Z {Ajs(S) + 2Aff '  flju 
j s 

- i[Bj,(S) - 2 A Z "  ay,] }. 

Accordingly  Friedel 's  law is not broken by anharmonic  
vibration of  atoms but by the anomalous  dispersion 
effect. 

Crystallographic symmetry  and  T (  S)  

The G T F  of  an atom at a crystal lographical ly 
equivalent position related by a symmet ry  operation R 
is discussed here. Let u s and uff be the displacement  

vectors defined on the principal-axes system and the 
crystal-lattice system, respectively, of  an atom at a 
crystal lographical ly equivalent position related to the 
original position by the operation R, in which 
operations of  t ranslat ion need not be considered. Since 

is equal to R u  e, S. u ~ is expressed in terms of  u in 
the same way as before, 

S .  u s h '  s -~  U c 

= h '  R A  - 1  u 

= H s '  u/2zq (12) 

where 

H s '  = 2zth' R A - k  (13) 

F rom (5), (12) and (13), TS(S), that  is the G T F  of  an 
atom at a symmetry-re la ted position, is obtained simply 
by replacing H in (6) with H s, or h' with h' R. 

Point  symmetr ies  and  restrictions in Clj k's and  Qujk's 

Ctjk's and Qiljk'S, as well as Utj's are subject to 
restrictions due to crystal  symmetries .  Without  taking 
these restrictions into account,  least-squares refine- 
ments  lead to erroneous parameters  or singular normal  
equations. 

Table 2. S y m m e t r y  restrictions on Ctj k 

* indicates symmetry-permitted independent parameters, n. i' j '  k' in the column Cok means that Cu~ is equal to Cej, k, multiplied by n. 
Nin d is the number of independent parameters. 

For details, see text. 

Point 
symmetry C~m C122 C133 C211 C222 C233 C311 C322 C333 C123 N|n d 

1 * * * * * * * * * * I0  
i 0 

2(u 3 II 2) * * * * 4 
m(u 3 I m) * * * * * * 6 
2 / m  0 

222 * I 
m m 2 ( u  3 [I 2) * * * 3 
m m m  0 

4 * 311 * 2 
4" * - 3 1 1  * 2 
4 / m  0 

422 0 
4mm * 311 * 2 
42m(u~ II 2) * 1 
4/mmm 0 
3 * -3.111 -3.222 * * 311 * 4 

0 
32(u I II 2) * --3.111 I 
3m(u, A_m) --3.222 * * 311 * 3 
3m 0 
6 * 311 * 2 

• -3.111 -3.222 * 2 
6/m 0 
622 0 
6mm * 311 * 2 
6m2(u 1 I m) -3.222 * 1 
6/mmm 0 
23 * 1 
m3 0 
432 0 
$,3m * 1 
m3m 0 
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Table 3. Symmetry restrictions on Qiijk 

* indicates symmetry-permitted independent parameters, n. i' i ' j '  k' in the column Qtuk means that QIUk is equal to Qr ~,~, k' multiplied by n. 
Nln d is the number of  independent parameters. Point symmetries with the same symmetry restrictions are put together in a row. 

For details, see text. 

Point 

symmetry Olnl 01122 01133 02222 02233 03333 
l,i  * * * * * * 

2(u 3 II 2), 
m(u 3 i m), I * * * * * * 
2/m(u 3 II 2) 

222,mm2, } . . , . . , 
mmm 
4,4,4/m } * * * 1111 1133 * 
422,4mm, } * * * I I 11 1133 * 42m,4/mmm 
3,3 } * 2.1111 * 1111 1133 * 

32(u~ II 2), 
3m(u I A_m), I * 2.1111 * 1111 1133 * 
3m(u, I m) 
6,6,6/m, } 
622,6mmm * 2.1111 * 1111 1133 * 
6m2,6/mram 
23,m3,432, 43m,m3m ) * * 1122 1 1 1 1  1 1 2 2  1111 

Qln3 Qn31 01112 Qn23 Q223 ,  Q n n  Q3n3 Q333, Q33n Nind 
* * * * * * * * * 15 

* * * 9 

6 

* - 1 1 1 2  5 

4 

-3.2223 * * -3.1131 5 

-3.2223 * 4 

Restrictions are easily found from the fact that the 
potential energy in (1) is invariant under the operations 
of the point symmetry. They are summarized in Tables 
2 and 3 for Cuk'S and Qiuk's, respectively. The number 
of independent parameters in these tables are identical 
to those tabulated by Johnson (1969). However, 
restrictions are not the same as those tabulated by 
Johnson or those in International Tables for X-ray 
Crystallography (1974) since Johnson's formalism is 
based on the crystal-lattice system, and the present one 
is based on the Cartesian coordinate system described 
in the foregoing discussion. 

In our least-squares program LINKT80 (available 
on request) written by one of the authors (KT), one of 
the axes which has the largest directional cosine with 
the lattice vector a or b is assigned as u~ or u 2, 
respectively. Principal axes u~, u 2 and u 3 of harmonic 
thermal ellipsoids of atoms with triclinic, monoclinic or 
orthorhombic point symmetries are determined and 
assigned unequivocally from harmonic temperature 
factors. Those of atoms with cubic point symmetries 
are taken to be parallel to the lattice vectors. However, 
in the cases of tetragonal, trigonal and hexagonal point 
symmetries, we cannot determine u~ and u2 uniquely, 
while the u 3 axis is coincident with the main rotation 
axis X or rotational inversion axis X. u~ and u2 axes for 
atoms with such point symmetries as X, X and X/m (X 
is 3, 4 or 6) can be chosen to take any directions 
perpendicular to the main axis. As for the other 
tetragonal, trigonal and hexagonal point symmetries, u, 
and u 2 axes should be parallel to the diad rotation axis 
or perpendicular to the mirror plane which is parallel to 
the u 3 axis. (u i II 2) or (u i _[_m) in the first column of 

Tables 2 and 3 means that the u i axis is parallel to the 
diad rotation axis or perpendicular to a mirror plane, 
respectively. The restrictions in the tables are valid for 
this special assignment of the ui axis. 

If the u~ axis is replaced by the uj axis, we can obtain 
the new symmetry restrictions simply by exchanging i 
with j in Cij k or Qiijk,  since the Cuk'S and Qiuk'S  are 
symmetric with respect to all index permutations. For 
example, if the diad rotation axis of point symmetry 32 
is assigned as u 2, then the two parameters C,1 ~ and 
Q2223 a r e  changed to C222 and Q1~3~, respectively. 
Symmetry restrictions C~22 = -3C~1~ and Q~23 = 
-3Q2na are replaced by C2,~ = -3C222 and Q223~ = 
-3Q~a  ~, respectively. The other restrictions of point 
symmetry 32 remain unaltered. The only exception to 
the axis exchange_rule mentioned above is the case of 
point symmetry 42m. The replacement of (u~ II 2) by 
(u 2 II 2) does not change the restriction. However, if it is 
replaced by (u~ _km), then the independent parameter 
C123 is changed to Ca, ~ which is equal to - C 3 n  due to 
symmetry restriction. 

E x a m p l e  o f  the analys is  

(a) KCuF a crystals* 
Since small anharmonic vibrations of atoms can be 

treated most properly by the Willis method, its 

* A list of structure factors has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38449 (8 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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application to an electron density study is an interesting 
topic. The results can be interpreted easily by com- 
paring them with difference density maps. In the 
previous paper (Tanaka & Marumo, 1982), the GTF of 
the Cu atom with the point symmetry mmm in crystals 
of KCuF 3 (space group I4/mcm) was determined at 
296 K. GTF's  of the other atoms, K, F(1) and F(2) 
with point symmetries 422, 42m and mm2, respect- 
ively, were calculated as an example. The coordinates 
of K, F(1) and F(2) are (0,0,¼), 1~ (0,~,¼) and 
(0.22769,0.72769,0), respectively. As shown in Table 
3, the K atom has six fourth-order anharmonic 
parameters, Q1111, Q1122, Q1133, 02222, 02233 and Q3333, 
in which Q2222 and Q2233 a re  equal to Q1111 and Q1133, 
respectively. Ul, u2 and u 3 axes were taken to be parallel 
to the a, b and c axes, respectively. F(1) has one 
third-order and three fourth-order independent param- 
eters, ul, u 2 and u 3 axes were selected for both atoms to 
be parallel to a + b, - a  + b and e, respectively. These 
parameters were refined simultaneously by fixing 
harmonic temperature factors. Parameter interactions 
between harmonic and anharmonic parameters were 
severe, while those between anharmonic parameters 
were small. The final R 1 = Y (IFol - Igcl)/~ IE o) and 
R2 = { ~  (iFo I _ iFcl)2/~. F 2 }1/2 were 0.0099 and 
0.0096, respectively, for 888 reflexions with sin 0/2 < 
1.322 ,/i -1. R 1 and R 2 for 500 independent reflexions 
were 0.0077 and 0.0073, respectively. R 1 and R 2 
values before the correction were 0.0084 and 0.0079, 
respectively, for the independent reflexions. Tempera- 
ture factors of these atoms as well as that of the Cu 
atom were converted to the parameters of OPP in (1) 
and they are listed in Table 4, in which parameters with 
values greater than their standard deviations are 
marked by *. The number of reflexions perturbed by 
the anharmonic effect more than their statistical 
counting errors was 38 among 888 reflections. Per- 
turbations in structure factors of 122 reflexions were 
greater than 0.1 in electron units. 

Table 4. Harmonic (× 10 -19 J A -2) and anharmonic 
third-order (× 10 -19 J ~-3)  and fourth-order (× 10 -19 J 
A-4) potential parameters of atoms in KCuF 3 at 296 K 

bl 
b2 
b3 
till 
C122 
Cl33 
C311 
C322 

qlll! 
q1122 
q1133 
q2222 
q2233 
q3333 

Values in parentheses are the e.s.d.'s. 

Cu K F(I) 

6.343 (0.035) 2.650 (0.008) 1.833 (0.010) 
4.667 (0.019) b~ b~ 
7.127 (0.042) 2.828 (0.013) 5.684 (0.114) 

F(2) 

5.442 (0.090) 
2.062 (0.013) 
2.055 (0.020) 

-0.39 (0.28)* 
-0.03 (0.26) 

0.60 (0.27)* 
0.56 (0-51)* 

--C311 
-6.30 (3.77)* 0.01 (0.15) 0.08 (0.22) -2.30 (2.88) 
25.36 (4.27)* -0.90 (0.79)* 0.96 (0.098) 6.63 (4.54)* 
2.33 (23.79) 0.84 (0.58)* -3.44 (3.20)* 1.65 (4.61) 

-2.32 (1.66)* qHtt qlH~ -0.63 (0.36)* 
--5.96 (14.31) qma q1133 0.78 (1.17) 

0.83 (2.13) -0.33 (0.22)* 2.45 (3.17) -0.33 (0.35) 

(b) (~-A120 3 crystals at 2170 K 

This is an example of the application of the present 
method to low-symmetry atoms at high temperature. 
The X-ray data set has been measured and analyzed by 
Ishizawa, Miyata, Minato, Marumo & Iwai (1980). 
The experimental condition at 2170 K was too severe 
to collect accurate intensity data. However, the 
temperature was high enough for anharmonic thermal 
vibration to have a significant effect on intensity data. 

The AI and O atoms have point symmetries 3 and 2, 
respectively. The ul, u2 and u 3 axes of the A1 atom were 
taken to be parallel to a, ½a + b and e, respectively, 
while the axes of the O atom were calculated from the 
harmonic temperature factors. The unit vectors along 
u~, u, and u3 axes are 

l =  0.206a 

j = 0.0935a + 0.187b - 0.0467e 

k = 0.0739a + 0.148b + 0.0591e. 

Since the U l axis is coincident with the twofold axis, 
u 3 II 2 in Tables 2 and 3 is changed to u I II 2. Following 
the axis exchange rule mentioned previously, the 
parameters C3j j and Qtll2 w e r e  changed to C~./j and 
Qii23, respectively. The calculated potential parameters 
are tabulated in Table 5. Detailed discussions of them 
are presented elsewhere (Tanaka & Marumo, 1983). 
After the correction R 1 and R 2 values were reduced 
from 0.035 and 0.038 to 0.033 and 0.034, respect- 

Table 5. Harmonic ( X 1 0  -19 J /~-2)  and anharmonic 
third-order ( × 1 0  -19 J 1i -3)  and fourth-order ( × 1 0  -19 

J A-4)potentialparameters of atoms in a-A1203 

Values in parentheses are the e.s.d.'s. 

A1 O 

b, 10.22 (0.33) 10.98 (0.64) 
b2 bl 13" 15 (0"68) 
b 3 11.55 (0.33) 9.34 (0.32) 
cH~ 0.03 (0.56) 4.06 (1.86)* 
C122 --3C1,1 --4"03 (5"75) 
cm -7.13 (3.27)* 
C211 --3C222 
c222 0.11 (0.47) 
c3xl 0.94 (0.92)* 
C322 C311 
C333 --0"80 (0.76)* 
c123 -6.33 (6.7"6) 
qHH 1.68 (1.46)* 16.71 (9.70)* 
qm2 2q1111 --I 17.8 (70.7)* 
qH33 --16.28 (12.10)* --9.80 (33'78) 
q2222 qml 20.35 (17.39)* 
q2233 qm3 13.23 (39.54) 
q3333 6.54 (4.78)* 0.14 (5.71) 
ql,23 --3q2223 --37.19 (53.30) 
qml 1.91 (9.00) 
q2223 --4" 15 (8"59) 12" 13 (33" 19) 
q2231 --3q1131 
q3323 1"83 (21"98) 
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ively. The number of reflexions perturbed by anhar- 
monic effects more than their statistical counting errors 
was only one out of 76 reflexions. However, per- 
turbations in structure factors of 63 reflexions were 
greater than 0.1 in electron units. 

Discussion 

Willis's treatment assumes that the anharmonic poten- 
tial V~ is much smaller than knT, and that ( V , / k ~ T )  2 
and higher terms are negligible. V~ is always larger than 
k~ T further from an atom. However, the amplitude of 
the atomic vibration is limited. Thus we judge the 
validity of the Willis treatment from the (V~/kn T)  value 
at the root-mean-square displacement (r.m.s.d.) of the 
atom which is calculated from the harmonic tempera- 
ture factor Th. In Table 6, r.m.s.d.'s along the principal 
axes of the thermal ellipsoid of each atom and V, /kn  T 
at r.m.s.d.'s are tabulated. Apparently the assumption 
is valid in the present examples. The ratios of 
anharmonic potentials of the third-order F~ to the 
fourth-order F~ at r.m.s.d.'s of the F(2) atom along the 
u~ axis is 1.96. It is apparent that F~ and F~ have values 
of the same order. Thus the assumption that F~ is 
negligibly small compared to V~ is not always valid. 

Willis's treatment of anharmonic vibration gives us 
the OPP in such a manner as to reveal preferred 
directions of atomic vibrations. Thus in accurate 
studies there is a close correspondence between OPP 
and difference-Fourier maps. Positive peaks are ob- 
served where anharmonic potentials are negative and 
vice versa. In the examples of KCuF3 crystals, the 
significant anharmonic potential of the K atom on the 
plane u 3 = 0 is -0.90u~u~ as shown in Table 4. 

Table 6. The ratio o f  V~ to k s T  at r.m.s.d, a long the ui 
axis  f r o m  each a tom 

Vectors  in parentheses  indicate the direct ion o f  the u~ axis. 

A t o m  

Cu 

K 

F(I)  

F(2) 

A I  

O 

Poin t  R.m.s.d.  
s y m m e t r y  Axis (A) V J k s T  

m m m  u~ (a + b) 0.0803 -6 -41  × I0 -~ 
u 2 ( - a  + b) 0.0936 - 4 . 3 6  × 10 -~ 
uj (e) 0.0757 6.68 × 10 -~ 

4 2 2  u~ ( a )  0 - 1 2 4 2  5 - 8 2  × 1 0  - s  

u~ (b) 0.1242 5.82 x 10 -~ 
u s (e) 0.1202 - 1 . 6 9  × 10 -s 

42m u t (a + b) 0.149 6.82 x 10 -s 
u 2 ( - a  + b) 0.149 6.82 x 10 -s 
u~ (c) 0.141 3.10 x 10 -s 

mm2 u~ (a + b) 0.0867 - 9 . 3 9  × 10 -s 
u 2 ( - a  + b) 0.141 - 6 - 0 6  x 10 -s 
u s (c) 0.141 - 3 . 2 0  x 10 -s 

3 u~ (a) 0.171 4.82 x 10 -s 
u 2 (a/2 + b) 0.171 4.82 x 10 -~ 
us (c) 0.161 3.52 x 10 -3 

2 u~ 0.165 1.02 x 10 -~ 
u 2 (see text) 0.151 3.53 x 10 -2 
u~ 0.179 1.87 x 10 -3 

Equi-potential curves of it are two rectangular hyper- 
bolae which correspond to the four leaves around the K 
atoms in Fig. l(a). They became spherical after the 
correction as shown in Fig. l(b). F(2) has four 
significant anharmonic parameters as shown in Table 
4. The difference-Fourier map on the plane u 3 = 0 is 
depicted in Fig. 2(a). Equi-potential curves of the F(2) 
atom calculated from the significant anharmonic terms 
on the same plane are also shown in Fig. 3. To the right 
of the F(2) atom, a positive peak is found in Fig. 2(a) 
and V~ is negative around this area in Fig. 3. After the 
anharmonic vibration correction all these peaks 
became less pronounced as shown in Fig. 2(b). The 
F(1) atom has four significant parameters. However, 
they are approximately equal to their standard 
deviations, and the difference-Fourier map shows only 
a slight improvement after the correction. 

Little correlation between the third- and fourth-order 
anharmonic parameters may be because the former is 
the component of the imaginary part of the tempera- 
ture factor while the latter is that of the real part. As 
pointed out by Cooper & Rouse (1973) and Mair, 
Barnea, Cooper & Rouse (1974), correlation between 
harmonic and anharmonic parameters was so severe 

u 2 
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Fig. 1. Sect ions o f  the d i f ference-Four ier  m a p  a round  K (a) before  

and (b) after the a n h a r m o n i c  vibrat ion analysis.  C o n t o u r s  are at 
intervals o f  0.1 e / k - L  Negat ive  and zero  con tou r s  are in b roken  
and dashed-dot ted  lines, respectively.  
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Fig. 2. The  sect ions on the d i f ference-Four ier  m a p  on the plane 

u 3 = 0 a round  F(2)  (a) before  and (b) after the a n h a r m o n i c  
vibrat ion analysis.  C o n t o u r s  are the s ame  as in Fig. 1. The  
square  a round  the F(2)  a t o m  in (a) indicates  the area,  the 
potential  o f  which  is shown in Fig. 3. 
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that the simultaneous refinement of them was almost 
impossible, and harmonic temperature factors were 
fixed during the refinement. It is probable that T h is 
determined including a part of the anharmonic effect as 
well as that of the harmonic one, and it might be the 
remaining anharmonic effect that is corrected for in the 
subsequent refinement. However, this is not a serious 

4 s and qlitt Ui problem since each term in V a except cii i u i 
specifically expresses thermal vibrations along such 
directions as harmonic terms in T h cannot represent. 
When citiu ~ and qiiiiu~ are comparable to blu 2, the 
b i u 2 are possibly refined to include a significant part of 
the anharmonic vibration effect. In the case of small 
anharmonic vibration, T h may not be affected signifi- 
cantly by anharmonic effects, since fitting second-order 
harmonic terms to the higher-order terms, which has a 
much less pronounced effect, may produce many more 
discrepancies than those without the correction. If T h is 
perturbed by anharmonic vibration significantly, new 
ghost peaks would be expected to appear on difference- 
Fourier maps. When anharmonic terms up to fourth 
order cannot express an atomic vibration along some 
special direction, fifth- or sixth-order terms should be 
employed. Since the potential of the O atom in Table 5 
with the very low symmetry revealed ridges and valleys 
of the potential along lines connecting neighboring O 
atoms (Tanaka & Marumo, 1983), parameters up to 
fourth order, however, are expected to be sufficient. 

Sakata & Harada (1979) pointed out in the study of 
CuCI crystals by neutron diffraction that parasitic 
peaks appear on Fourier and difference-Fourier maps 
without correction for anharmonic odd-order terms, 
since imaginary components of a temperature factor 
shift a phase in a structure factor. In the case of an 
X-ray study this problem also occurs even in crystals 
with a center of symmetry. Bjs(S ) in (11) is, in this case, 

Bjs(S)  = a s. 

Accordingly, the phase-shift problem occurs if the 
dispersion effect is significant. Since A f / '  is a constant 
value, it is comparable to fj~(S) and fj~(S) in high-angle 
reflexions where the effect of anharmonic vibration is 
prominent. In studies of anharmonic vibration by 
X-rays, the dispersion effect should not be ignored. In 
fact most of the parasitic peaks in Fig. 2(a) dis- 
appeared in Fig. 2(b) after the correction. 

We must add at most 25 more parameters per atom 
to the conventional least-squares procedure. It seems 
too many compared to their effect on structure factors. 
However, it is not necessary to use all of the 
symmetry-permitted parameters, since not all of the 
anharmonic parameters are always significant. Thus 
they can be omitted from the refinement. Refinement 
with all of the symmetry-permitted parameters and with 
effective parameters gave essentially the same results in 
the present studies on KCuF 3 and a-A1203 crystals. 

We are indebted to Dr M. Sano, Dr E. Miyoshi and 
Professor H. Kashiwagi for supplying us with the 
program J G R A P H .  Our thanks are also due to Mr N. 
Kijima who wrote the program F R P L O T  on the basis 
of J G R A P H .  All the difference-Fourier maps were 
depicted by F R P L O T .  Part of the cost was met by the 
Grant-in-Aid for Scientific Research, No. 56420019, 
from the Ministry of Education, Science and Culture, 
to which the authors' thanks are due. 

A P P E N D I X  1 

Let us consider the case with N variables, pl ,  P2, ... ,  PN, 
to be refined by the least-squares method for M 
structure factors, F1, F2, . . . ,  FM. We assume that n 
variables Pl, P2, ... ,  Pn are transformed from ql, q2 . . . .  , 
q,, based on another coordinate system by the linear 
transformation, that is 

////o. 1~ / ~ ~  

i!\l/l , 

Fig. 3. Potential around F(2) on the square shown in Fig. 2(a). 
Contours in thin and thick lines are at intervals of 2 x 10 -23 and 
2 x 10 -22 J, respectively. Broad lines at the extreme left on (a) 
are at intervals of 2 x 10 -21 J. Negative and zero contours are in 
broken and dashed-dotted lines, respectively. 

n 

qi = ~ gikPk (i = 1, 2 , . . . ,  n). (A 1) 
k = l  

We define the column vectors p and q with elementsPl , 
P2, . . . ,  Pn, Pn+l, "" ", PN and ql, q2 . . . .  , qn, Pn+1, . . . ,  PN, 
respectively. Then 

q = Gp, (A2) 

where G is a square matrix with elements 

(G)u = [ gtj for i < n and j  < n 

t Jlj elsewhere. 

Jij is the Kronecker delta. We assume here that there 
exists an inverse matrix of G. Following the usual 
procedure, the normal equation is obtained, 

D' Dp = D' v, (A3) 
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where D is a matrix with M rows and N columns with 
elements (D)ij = 3Fi/~gpj and v is the column vector 
with M elements v~, v 2, . . . ,  v M defined as the difference 
between observed and calculated structure factors. 
W h e n j  < n, (D)ij is obtained from (A 1) as 

Accordingly, 

(D)/j= ~, (cOFi/tgqk)gkj. 
k = l  

D = Dq G, (A4) 

where D o is a matrix with M rows and N columns with 
elements 

[ c~Fi/c~qj f o r j  < n and i < N 

(Dq)u= cgFJOpj fo r j  > n and i _< N. 

Putting (A2) and (A4) into (A3), we obtain 

D~Dqq= D~v. (A5) 

It is evident that if the normal equation (A3) holds for p 
then the normal equation (A 5) holds for q. 

Anharmonic parameters based on the crystal-lattice 
system and on the principal-axes system have a linear 
relationship to each other. The relationship among 
anharmonic parameters of an atom with point sym- 
metry m m m  in space group I 4 / m c m  is derived as an 
example. The principal axes of the thermal ellipsoid 
point along a + b, - a  + b and e, respectively, in this 
case. From (2) and (3), 

ul = a(u~ + uDIx/~ 

u 2 = a(--uet + u~)/V/2 (A6) 

U 3 : CU~. 

From (1) and Table 3, the anharmonic potential is 

Va = E E qujjUi u). 

Putting (A6) into (A 7), we obtain 

~a---- -a4(ql111 + q2222 + q l122) (U~ 4 + U~4) /4  

+ a4(3q1111 + 3q2222 -- qlt22) U~ 2 U~ 2/2 

c2 c2 + a2c2(qna 3 + q22aa)(U~ 2 + u 2 )u 3 /2  

4 U~4 
+ C q3333 

+ a 4 ( q n l l -  q2222)(uC13u~ + UelU~ 3) 

+ a2c2(q1133 c c c2 - -  q2233)UlU2U3 • 

Thus the anharmonic parameters based on the crystal- 
lattice system are expressed as the linear combination 
of qujj's based on the principal-axes system. 

q~111 = a4(ql,~ + q2222 + q~,22)/4 

ql122c = a4(3qllll + 3q2222-- q1122)/2 

c = a 2 2 q1133 C (q1133 + q2233)/2 
c 

q2222 = q~lll 
c c 

q2233 = q1133 
c 

q3333 = 04 q3333 

q1112c -- a 4 ( q H l l -  q2222) 
¢ ¢ 

q2212 = q l l12  

q3312c = a 2  c2(q1133 - -  q2233) 

Accordingly six qiijj'S c a n  be refined in the usual way 
c with the least-squares method instead of q~l~, q~22, 

c 
qi133,  q~3333, c q1112 and q~312. 

APPENDIX 2 

Assuming that an anharmonic potential V a, which is 
equal to u ' C v  + c123UlU2U3 -F v t Qw, is small 
compared with k s T, the numerator M in (4) becomes, 
in the general case, 

M = e x p ( - V o / k  B T)  f e x p ( - V h / k  B T)(1 -- Va/k s T)  

x exp(iH'  u) du, 

where V h is a harmonic potential and equal to u' Bu/2. 
We replace bi /k  B T, Cijk/kB T a n d  qiijk/k B T by B i, Cij k 
and Qujk, respectively, and we put 

oo 

I2n = _I ui2n e x p ( _ B i u 2 / 2 )  cos (Hiu i  ) du i 

--00 

O0 

I2n+t= f u2n+l e x p ( - B i u ~ / E )  s in (Hiu i )du  i. 

--00 

Then M becomes 

M e x p ( - V o / k B T ) {  ° ° ° ( ~ '  = 11 12 13 - i Cin I3 I) o 

q- E E C i j j  I 1 T 2  TO - -  1 1 1 ) "~ *j *k C~23I~I213 
i ~ j  

(~i Q u u r 4 r ° r °  2 2 o -, . j - k  + Y Y __ ' Quj j l i  l j  lk 
i< j  

~ 3 , 0  ~ ,  I2I~ '~ t  (A8) - Q i w l i l J I  k -  Qujk i j l k  , 
i~:j i / J  

where suffixes i, j and k are different from each other. 
The I~' are evaluated as 
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I 0 = (2z#Bt) 1/2 exp(--H~/2Bt), 

I~ = ( n J B  i) I°, 

I ? =  (1 /B, - -  H~ /B~) I  °, 

3 3 0 /3 = (3/-6/8~ - / - 6 / B i ) I i ,  

4 4 0 I 4 =  (3 /B~-6H2/BI  + H , / B , ) I  i . 

Inserting I~"s into (A 8), we obtain 

M = e x p ( - Z o / g B  r ) I ° I ° I ° { 1  - ( ~ r -  ,Tr + ~r) 

-- i (~ t - t/i)} ( a9 )  

(for ~,i ,  r&i and fir, see text). Similarly, if we replace 
integrals 

oo 

f u~ n exp ( -B tu~ )du  i 
--00 

by j2n (n = 0, 1, 2), the denominator N in (4) is 
evaluated as 

N = e x p ( - ~ / k B T ) {  ° ° ° (~., ' Jl  J~ J3 4 0 0 -- QuuJ~ Jj J~ 
i 

+ ~ ~. n j2j2/-0'~I ( h l 0 )  

where subscripts i , j  and k are different from each other 
again. The j2. are evaluated as 

j o  = (2~/Bp,/~,  

J~ = (1 /Bi )J  °, 

and 

J4= (31B~)J~. 

Putting these into (A 10), N becomes 

N - = e x p ( - V o / k  BT) (87 t3 /BIB2B3)  1/2 (1 - ~r)" ( a l l )  

From (A9) and (A 11), T(S) is derived: 

T(S) = exp(-- ~ H ~ U i / 2 ) { 1 - ( ~ r - r l r + ~ r  ) 

- -  i (~ t -- r / i ) } / ( 1  - -  ~r), 

where U i = lIB i = k s T/b i. 
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